
1

PRESENTED BY

A L T E R Y X 1 9

INTRODUCTION TO
REGULAR
EXPRESSIONS

Chris Kingsley

A L T E R Y X 1 9

COMPLETE
SESSION SURVEYS
ATTENTION

2

• A survey was placed at your seat. It should take less than 2 minutes to complete

• Please return your completed surveys A S YO U E X I T the room

• Surveys are anonymous, and we rely on your opinion for improvement

2

A L T E R Y X 1 9

NETWORK NAME:
InspireTRN19

PASSWORD:
inspireTRN!

3

A L T E R Y X 1 9

FORWARD-LOOKING
STATEMENTS

This presentation includes “forward-looking
statements” within the meaning of the Private
Securities Litigation Reform Act of 1995. These
forward-looking statements may be identified by the
use of terminology such as “believe,” “may,” “will,”
“intend,” “expect,” “plan,” “anticipate,” “estimate,”
“potential,” or “continue,” or other comparable
terminology. All statements other than statements of
historical fact could be deemed forward-looking,
including any projections of product availability,
growth and financial metrics and any statements
regarding product roadmaps, strategies, plans or use
cases. Although Alteryx believes that the
expectations reflected in any of these forward-
looking statements are reasonable, these
expectations or any of the forward-looking
statements could prove to be incorrect, and actual

results or outcomes could differ materially from
those projected or assumed in the forward-looking
statements. Alteryx’s future financial condition
and results of operations, as well as any forward-
looking statements, are subject to risks and
uncertainties, including but not limited to the
factors set forth in Alteryx’s press releases, public
statements and/or filings with the Securities and
Exchange Commission, especially the “Risk
Factors” sections of Alteryx’s Quarterly Report on
Form 10-Q. These documents and others
containing important disclosures are available at
www.sec.gov or in the “Investors” section of
Alteryx’s website at www.alteryx.com. All
forward-looking statements are made as of the
date of this presentation and Alteryx assumes no
obligation to update any such forward-looking
statements.

Any unreleased services or features referenced in
this or other presentations, press releases or public
statements are only intended to outline Alteryx’s
general product direction. They are intended for
information purposes only, and may not be
incorporated into any contract. This is not a
commitment to deliver any material, code, or
functionality (which may not be released on time
or at all) and customers should not rely upon this
presentation or any such statements to make
purchasing decisions. The development, release,
and timing of any features or functionality
described for Alteryx’s products remains at the
sole discretion of Alteryx.

4

3

A L T E R Y X 1 9

With Alteryx, I can…
parse all our source code to find messages
that need to be translated for our
international users

CHRIS
KINGSLEY

When I use Alteryx, I feel…

in control.

A LT E RY X U S E R S I N C E 2 0 1 4

6

A L T E R Y X 1 9

TODAY’S
AGENDA

• Introduction

• RegEx Crash Course

• Exercises

• Designer Use-Cases

4

A L T E R Y X 1 9

INTRODUCTION

A L T E R Y X 1 9

LEARNING REGEX

• Language about recognizing patterns

• Useful for parsing and matching strings

• Multiple methods to get the same result

• Just a few basic concepts to get you rolling…

5

A L T E R Y X 1 9

WHAT IS REGEX?

A L T E R Y X 1 9

WHAT IS REGEX (CON’T)?

• A regular expression, or “RegEx”, is

- a sequence of characters

- conforming to a specific syntax

- that defines a textual pattern

6

A L T E R Y X 1 9

WHAT IS REGEX (CON’T)?

• Sequence of characters

- Each character in a regular expression represents either a literal character or a metacharacter, which is a
character that has special meaning.

• Specific syntax

- Different codified rules for writing regular expressions exist. That is, the specific syntax may vary, depending
on the regular expression processor used. However, there are a few widely-used syntaxes, such as POSIX and
Perl, that have an overlapping set of rules and metacharacter definitions.

• Textual pattern

- Regular expressions find, or “match”, patterns in text. No pattern? Then a regular expression cannot be used.

A L T E R Y X 1 9

WHY REGEX?

• It is a language of its own that spans multiple tools – not just Alteryx
- Know it here, know it everywhere

• It is a powerful way to parse loads of data in a matter of keystrokes

• Other tools only parse on string position or by hardcoded string values

• Parse by the “type” of characters in the text rather than the text itself!

7

A L T E R Y X 1 9

STAGES OF LEARNING REGEX
Stage 1 (The Dreamer)

I know I want it.
I know I need it.
What is it?

Stage 2 (Self-loathing)

Is this really worth it? It’s worth it.

Stage 3 (Awakened Parser)

A L T E R Y X 1 9

REGEX
CRASH
COURSE

8

A L T E R Y X 1 9

WHAT IS A CHARACTER?

• In machine-stored text, a character can include more than just letters of the English alphabet.

• Strictly speaking, it is not possible to refer to “characters” without also referencing the method by which
those characters are encoded.

- ASCII extended example: á used in Latin-based languages

- Unicode example: ह used in Devanagari

A L T E R Y X 1 9

WHAT IS A METACHARACTER?

• Metacharacters are characters that have special meaning in regular expressions.

• Examples: . [{ } () \ * + ? | ^ $

• Some characters are special only in certain circumstances

- ‘]’ is special only when it follows a ‘[‘

9

A L T E R Y X 1 9

WHAT IS A LITERAL CHARACTER?

• Any character that is not a metacharacter will be matched to that character itself.

• Literal means literal. The letter “e” matches “e” and only “e”. It won’t, for example, match “E”. By
default, Regular Expressions are case-sensitive.

- I’m not talking just looking alike either! E != Е , the first is Latin, the second Cyrillic

• If we want a metacharacter to be interpreted as a literal character, then that character must be “escaped”
using the backslash metacharacter.

- Match on a period. \.

• Examples: a b c l 4 # á ह

A L T E R Y X 1 9

LITERAL CHARACTERS CON’T

• A literal character may be a whitespace character

• Whitespace character

- Non-printing character that still exists in the text string.

• Examples:

- \s space

- \t tab

- \n new line

- \r carriage return

10

A L T E R Y X 1 9

THE REGEX TOOL

• For the duration of this course we will be using
our REGEX tool

• Parses a single field and outputs in 1 of 4 ways

- Match

- Replace

- Parse

- Tokenize

• In this course we will work in Match, Replace,
and Parse as we learn to write expressions

A L T E R Y X 1 9

THE REGEX TOOL (CON’T)

• Match

- Output True or False if the textual pattern matches the entire string

• Replace

- Find the textual pattern within the string and replace the matching text with something else.
NOTE: This occurs as many times as possible

• Parse

- Find 1 or more patterns in the string and output them in separate field(s)

• Tokenize

- Split the string based on a pattern

11

A L T E R Y X 1 9

A NOTE ABOUT REGULAR EXPRESSION
EXAMPLES

• The Boost application library is used in Alteryx Designer.

• More information at http://boost.org

The regular expression examples used today are based on the Perl syntax, specifically the
syntax implemented in the Boost source library.

A L T E R Y X 1 9

Text Matched

False

False

True

EXAMPLE

Text

abcdefg

abcde

abcd

1. Goal: Let’s write a rule that matches all the values!
2. First note that they all have the value ‘abcd’ – put the characters in the expression builder!
3. Well, ‘abcd’ matches ‘abcd’ but how do we account for the two other words with variable characters?

RegEx Builder

abcd

http://boost.org/

12

A L T E R Y X 1 9

MOST COMMON METACHARACTERS

Any single character – ‘a’, ‘b, ‘&’, ‘2’, etc.

Zero or more of the preceding character

One or more of the preceding character

Example: matches any text string with at least one character

A L T E R Y X 1 9

QUANTIFIERS

• Quantifiers specify how many instances of the previous character, group, or character class must be
present to constitute a match.

• Examples:

* Zero or more

+ One or more

? Zero or one.

{n} Exactly n number of instances.

{n,m} Between n and m number of instances.

{n,} n or more number of instances

13

A L T E R Y X 1 9

QUANTIFIER “GREEDINESS”

• The normal quantifiers are "greedy", that is to say they will consume as much input as possible.
So we should add the following.

* Zero or more, as many times as possible Scot* Scott

+ One or more, as many times as possible Scot+ Scott

? Zero or one, preferring one

{n} Exactly n number of instances.

{n,m} Between n and m number of instances, as many times as possible (up to m)

{n,} n or more number of instances, as many times as possible

A L T E R Y X 1 9

“GREEDINESS” CON ’T

• There are non-greedy versions available that will consume as little input as possible while still
producing a match.

? Zero or more, as few times as possible Scot? Scott

+? One or more, as few times as possible Scot+? Scott

?? Zero or one, preferring zero

{n} Exactly n number of instances.

{n,m}? Between n and m number of instances, as few times as possible (but at least n)

{n,}? n or more number of instances, as few times as possible (but at least n)

14

A L T E R Y X 1 9

Text Matched

True

True

False

Text Matched

True

True

True

BACK TO THAT EXAMPLE
Text

abcdefg

abcde

abcd

Text Matched

False

False

True

1. Goal: Let’s write a rule that match all the values!

2. First note that they all have the value ‘abcd’ – put the characters in the expression builder!

3. Well, ‘abcd’ matches ‘abcd’ but how do we account for the two other words with variable characters?

4. Let’s add some metacharacters to handle our text variability! Let’s add ‘.+’ after ‘abcd’

5. What happened?!

RegEx Builder

abcdabcd.+abcd.*

6. Our metacharacters are asking for at least one character after ‘abcd’ so ‘abcd’ doesn’t match

7. Try replacing ‘.+’ with ‘.*’

A L T E R Y X 1 9

REFINING METACHARACTERS

It gets better than just . What if we could categorize what type of character can capture?

- The digit metacharacter. Matches [0-9]

- The word metacharacter. Matches [0-9A-Za-z_]

- The space metacharacter. Matches white space:
(space, tab, carriage return, newline, form feed)

- The lowercase metacharacter. Matches [a-z]

- The uppercase metacharacter. Matches [A-Z]

15

A L T E R Y X 1 9

REFINING METACHARACTERS CON ’T

Want to flip the metacharacter logic? Capitalize them!

- The non-digit metacharacter. Matches everything but [0-9]

- The non-word metacharacter. Matches everything but [0-9A-Za-z_]

- The non-space metacharacter. Matches everything but white space

- The non-lowercase metacharacter. Matches everything but [a-z]

- The non-uppercase metacharacter. Matches everything but [A-Z]

A L T E R Y X 1 9

EXERCISES

Exercise 1 Hint: All strings have ‘abcd’

Exercise 1.5: All strings have ‘123’

Exercise 2: All strings we want to match have ‘.’

Note: There are many ways to match a RegEx, but some ways are more stringent than others.
For example, every string would match ‘.*’.

Don’t go for the easy way! Challenge yourself! Set a rule and try to make it work.

INSTRUCTIONS – COMPLETE EXERCISES 1-2

16

A L T E R Y X 1 9

BRACKETOLOGY

A L T E R Y X 1 9

Text Matched

True

True

False

Text Matched

True

True

TrueXXX

SQUARE BRACKET: SPECIFIC SET

- Represents any one character in a set

RegEx BuilderText

Can

Ban

Ran

1. Let’s match ‘Can’ and ‘Ban’ but not ‘Ran.

2. Our gut instinct may be to use ‘.an’

3. Why doesn’t it work?

4. We need to specify that it starts with ‘C’ or ‘B’

5. Use brackets and write ‘[CB]an’

.an[CB]an

17

A L T E R Y X 1 9

SQUARE BRACKET: RANGES

34

- Represents any one character from a to n

- Represents any one character from a to n, or 1 to 8

- Represents any one character from a to n, or 1 to 8, or ‘-’

- Represents any one character not (a to n, or 1 to 8)

A L T E R Y X 1 9

Text Matched

True

False

False

True

Text Matched

True

TrueXXX

False

True

CURLY BRACKET METACHARACTERS

- Represents number of characters – better articulation of

RegEx Builder

1. Let’s match any text that has at least four

occurrences of ‘a’ or ‘c’

2. Enter ‘[ac]+.+’ into the expression

3. What happened?

4. We didn’t account for less than four occurrences

5. Write ‘[ac]{4}.+’

[ac]+.+
Text

aacart

aapple

bbbbrave

ccccandy

[ac]{4}.+

18

A L T E R Y X 1 9

COMPLETE EXERCISES 3 -9

EXERCISES

Exercise 3: Text can start with the characters ‘c’, ‘m’, ‘f’

Exercise 4: Text can start with the characters ‘h’, ‘d’

Exercise 5: Starts with a capital letter

Exercise 6: Text has multiple ‘z’ characters

Exercise 7: Starts with at least 2 ‘a’ characters

Exercise 8: Starts with a digit

Exercise 9: Text contains whitespace

A L T E R Y X 1 9

ANCHORS

19

A L T E R Y X 1 9

WHAT IS AN ANCHOR?

• Anchors are a different kind of metacharacter. They do not match a specific character but, instead, match
a position before, after, or between characters.

• Examples:

- ^ Matches the position before the first character in the string.

- $ Matches the position after the last character in the string.

- \b Matches a word boundary, or the position immediately between a letter, digit, or underscore and a
character not a letter, digit, or underscore.

A L T E R Y X 1 9

Text Matched

True

True

Text Matched

True

False

ANCHOR METACHARACTERS

RegEx Builder

1. Let’s match both filnames

2. Enter .*\.pdf.* into the expression

3. Now let’s match only the filename that ends in .pdf

4. Write .*\.pdf$

.*\.pdf.*
Text

Filename.pdf

Filename.pdf.txt

.*\.pdf$

- Anchors the pattern to the end of the line

20

A L T E R Y X 1 9

PARSING
WITH
REGEX

A L T E R Y X 1 9

GROUP CONSTRUCTS

• By placing part of a regular expression inside parentheses, you can group that part of the regular
expression together or restrict alternation to part of the regular expression

• This allows you, for example, to apply a quantifier to the entire group.

• You can use the group constructs to parse text into separate fields

- represents a group of characters

21

A L T E R Y X 1 9

PARSE MODE
– REGEX TOOL

• The Parse Output Method

• We can output to many columns
from a single source field

A L T E R Y X 1 9

CAPTURING “MARKED” GROUPS

- represents a group of characters – typically used in parsing

Text

Anaheim, CA

Toledo, OH

Dallas, TX

RegEx Builder

1. Parse the text field to two separate columns

2. We know that we are going to build two

groups, city and state – enter two sets of ‘()’

3. We’ve created two groups, let’s say what

separates them: ‘,\s’

4. Now say what’s in each group. For group 1

enter ‘\w+’

5. Group 2: enter ‘\u{2}’

City State
()()(),\s()(\w+),\s()(\w+),\s(\u{2})

State

CA

OH

TX

City

Anaheim

Toledo

Ohio

22

A L T E R Y X 1 9

ALTERNATION

• Alternation provides the ability to match any single regular expression out of
several possible regular expressions.

• Alternation is specified by separating the options by the vertical bar or pipe symbol

• Examples:

- gr(e|a)y Match ‘grey’ or ‘gray’

- (cat|dog|fish) Match ‘cat’ or ‘dog’ or ‘fish’

- separates alternatives

A L T E R Y X 1 9

MATCHING WITH REGEX
WARNING:

If the whole text column is not represented with meta-characters, the result
of the parse will be the Null value.

If you were expecting a value, reevaluate your expression to ensure all parts
of the text are accounted for; even the parts you would not like to capture

23

A L T E R Y X 1 9

COMPLETE EXERCISES 11 -14

EXERCISES

Exercise 11: Capture just the file name

Exercise 12: Create two separate columns – one with original text, the other with just a year

• Hint: Groups may be nested

Exercise 13: Capture the height and width of the displays

Exercise 13: Using a match method, find the phrases “I love cats”, and “I love dogs”.

• Hint: Use a capturing group to capture cats or dogs

A L T E R Y X 1 9

WATCH IT
IN ACTION

24

A L T E R Y X 1 9

Parse huge text list of PubMed publications into a usable cleansed dataset

PARSING HTML

INSTRUCTIONS

F O L L O W A L O N G

A L T E R Y X 1 9

NOW YOU TRY IT!

• Open 03_exercise.yxmd

• This file is a list of racers in a world cup race series

• Each line has a name and places (in parentheses)

• Parse out the first name, last name and places

• Find the sum of all their places

INSTRUCTIONS

RESULTS

E X E R C I S E

25

A L T E R Y X 1 9

RESOURCES

52

• https://regex101.com/ , https://regexr.com/
At both of these you can enter sample text, and as you enter a regex it shows where it matches

• https://alf.nu/RegexGolf
Play a game, “Match all of these…, and none of these…” with as short a regex as possible

• https://regexone.com/
We used some of their examples.

A L T E R Y X 1 9 53

https://regex101.com/
https://regexr.com/
https://alf.nu/RegexGolf
https://regexone.com/

26

A L T E R Y X 1 9

QUESTIONS

54

A L T E R Y X 1 9

BEFORE YOU
LEAVE

ATTENTION

55

• B E F OR E YOU L E AV E…
Please take a moment to complete your evaluation survey.
Hand it to the room monitors on your way out.

27

A L T E R Y X 1 9

THANK

YOU
Chris Kingsley

ckingsley@alteryx.com

